

 ARL-CR-0809 ● NOV 2016

 US Army Research Laboratory

Accumulo/Hadoop, MongoDB, and
Elasticsearch Performance for Semi-Structured
Intrusion Detection (IDS) Data

prepared by Ralph P Ritchey
ICF, Inc.
7125 Thomas Edison Drive, Suite 100
Columbia, MD 21046

under contract W911QX-14-F-0020

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-CR-0809 ● NOV 2016

 US Army Research Laboratory

Accumulo/Hadoop, MongoDB, and
Elasticsearch Performance for Semi-Structured
Intrusion Detection (IDS) Data

prepared by Ralph P Ritchey
ICF, Inc.
7125 Thomas Edison Drive, Suite 100
Columbia, MD 21046

under contract W911QX-14-F-0020

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2016
2. REPORT TYPE

Contractor Report
3. DATES COVERED (From - To)

01/2016–08/2016
4. TITLE AND SUBTITLE

Accumulo/Hadoop, MongoDB, and Elasticsearch Performance for Semi-
Structured Intrusion Detection (IDS) Data

5a. CONTRACT NUMBER

W911QX-14-F-0020
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ralph P Ritchey
5d. PROJECT NUMBER

ARL APP
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICF, Inc.
7125 Thomas Edison Drive, Suite 100
Columbia, MD 21046

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-D
2800 Powder Mill Road
Adelphi, MD 20783-1138

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

ARL-CR-0809

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

NoSQL data stores are highly recognized for their ability to easily scale and store vast amounts of information. When
considering converting to a NoSQL data store, a fact-based analysis should be applied to address the issues inherent in such an
architectural-based, critical, core component change. As such, we evaluate Hadoop, MongoDB, and Elasticsearch as a
replacement for data stored in a custom intrusion detection system infrastructure. In this type of environment, the number of
records is voluminous, the records contain semi-structured data of varying data types, and both across-the-board analytics and
surgical queries must be supported.

15. SUBJECT TERMS

NoSQL performance, intrusion detection system, data storage, Hadoop, MongoDB, Elasticsearch

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

44

19a. NAME OF RESPONSIBLE PERSON

Ralph P Ritchey
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-0780
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution unlimited.
iii

Contents

List of Figures v

1. Introduction 1

2. Background 1

3. Yahoo! Cloud Serving Benchmark (YCSB) 2

3.1 Data Loading and Performance Testing Framework 2

3.2 Sharded Table Support 3

3.3 Workload Configuration 4

4. Hardware Configuration 5

5. MongoDB 6

5.1 Configuration 6

5.2 Performance Experiment and Results 7

6. Accumulo/Hadoop 9

6.1 Configuration 9

6.2 Performance Experiment and Results 9

7. Elasticsearch 11

7.1 Configuration 11

7.2 Performance Experiment and Results 11

8. Comparison of the Tested NoSQL Solutions 13

9. Conclusions 14

10. Future Work 14

11. References 16

Approved for public release; distribution unlimited.
iv

Appendix A. Overall Average Latencies 19

Appendix B. MongoDB Raw Performance Numbers 23

Appendix C. Elasticsearch Raw Performance Numbers 27

Appendix D. Accumulo/Hadoop Raw Performance Numbers 31

List of Symbols, Abbreviations, and Acronyms 34

Distribution List 35

Approved for public release; distribution unlimited.
v

List of Figures

Fig. 1 MongoDB configuration ..7

Fig. 2 MongoDB throughput ..8

Fig. 3 Comparison of average latencies within MongoDB8

Fig. 4 Accumulo/Hadoop configuration ...9

Fig. 5 Accumulo/Hadoop throughput...10

Fig. 6 Comparison of average latencies within Accumulo/Hadoop10

Fig. 7 Elasticsearch configuration ..11

Fig. 8 Elasticsearch throughput ..12

Fig. 9 Comparison of average latencies within Elasticsearch12

Fig. 10 Simulated execution time comparison ...13

Fig. 11 Performance comparison of Elasticsearch, MongoDB, and
Accumulo/Hadoop ...13

Fig. A-1 Read-modify write average latency ...20

Fig. A-2 Insert average latency ..20

Fig. A-3 Update average latency ..21

Fig. A-4 Scan average latency ..21

Fig. A-5 Read average latency ...21

Approved for public release; distribution unlimited.
vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

NoSQL data stores, such as Accumulo/Hadoop,1,2 MongoDB,3 and Elasticsearch,4
are highly recognized for their ability to easily scale and store vast amounts of
information in ways that a traditional relational database management system
(RDBMS)5 cannot. When considering a migration from an RDBMS to NoSQL, a
thoughtful, fact-based analysis should be used, just as when any other critical, core
architectural component is changed. In this report, we evaluate Hadoop, MongoDB,
and Elasticsearch as a replacement for RDBMS data storehouse in our custom
intrusion detection system (IDS). In this particular use case, the number of records
is voluminous and the records contain semi-structured data6 of varying data types.
The workload is varied, and both across-the-board analytics and surgical queries
must be supported.

During research and development, our in-house architected, built, and deployed
IDS used Oracle Database7 as the RDBMS component. Through the use of various
features such as table partitioning and bitmap indexes, Oracle Database scaled and
performed well. However, licensing and support costs have continued to increase
over the years, driving a desire to find a less-costly solution. After examining
available options, the open-source database PostgreSQL8 was chosen as a potential
replacement. PostgreSQL offered several architectural similarities to Oracle
Database that, prior to actual testing, we believed might allow it to scale to handle
the projected data and workloads. A research project was performed and a report9
was written that, although not quite a perfect apples-to-apples comparison,
provided us with sufficient confidence to move forward with our migration plan.

Several years have passed since the successful migration to PostgreSQL; data
volumes have continued to increase and it is again time to review options to replace
PostgreSQL with a component that will allow easier and more cost-effective
scaling. In addition, new techniques for detecting malicious and potentially
malicious attacks in our data are being developed that will require more efficient
access to our raw data and better access to computational resources. We believe
that the features and capabilities provided by a NoSQL solution will better meet
our needs, but this requires due diligence and evaluation to select the best option
for our current as well as future use case.

2. Background

Hadoop and MongoDB, classified as key-value and document-oriented NoSQL
solutions, respectively, are both recognized as the most popular within their
respective classifications.10 Elasticsearch is similar to MongoDB and is classified

2

as a document-oriented NoSQL solution. Although all offer excellent scalability
and performance, the correct one that will maximize performance over the long
term for our specific environment and use case when handling huge amounts of
data needs to be carefully considered. Key factors that should be included in the
decision-making process include the following:

• Are the data structured, semi-structured, or unstructured?

• Once inserted, what are the primary operations (transactions) that will be
performed—analytical iterations across all or large parts of the data, queries
to pull a few specific records at a time, or a combination of both?

In our environment, the largest set of data is semi-structured. Although much of the
information we collect is highly structured, the largest portion of any given record
is an unstructured, binary-type blob. With regard to the daily operational use of the
collected data, the current majority of operations occurring after the data are
inserted are primarily targeted queries. However, in the future, it is expected that
new tools will be developed that will perform analytics across vast numbers of
records, making its use more of a hybrid analytic-transactional system.

3. Yahoo! Cloud Serving Benchmark (YCSB)

3.1 Data Loading and Performance Testing Framework

When originally setting out to perform the research and experiments to determine
the best NoSQL solution for our environment, the expectation was that we would
need to build our own data loading and performance testing framework. While
performing literature research to review work performed by others in this area, we
discovered a paper11 that referred to a data loading and performance testing
framework, Yahoo! Cloud Serving Benchmark (YCSB).12 This framework is freely
available and, if proven sufficient for our testing, it would greatly reduce our startup
work on this research.

At first, YCSB was thought to come very close to matching our needs, but it lacked
one important item—the ability to create semi-structured data shaping during initial
loading that matched closely enough to our expected data layout to provide us with
results, thus allowing us to confidently make a decision. While digging deeper into
YCSB’s documentation and code, a fieldlengthhistogram configuration
parameter was discovered. This parameter, although apparently not as popular to
use (based on a lack of references in publications), allows a user to specify a
specially crafted histogram file as input to shape the data generated for each
individual record used to populate the data store being tested.

3

The first set of tests performed to determine the suitability of
fieldlengthhistogram looked very promising. However, we quickly
discovered that in adjusting the workload and histogram input file parameters, the
data shaping we required was an edge case not directly supported by the provided
implementation. Analysis of the algorithm supplied in HistogramGenerator.
java confirmed that our edge case could not be effectively tuned, and a
replacement HistogramGenerator.java file that worked specifically for our
needed data shaping was easily developed and tested.

Note: To use YCSB, several additional packages were needed that are not natively
included with version 6.8 of Red Hat Enterprise Linux (RHEL). Individuals trying
to recreate the experiments or set up their environment for running their own
experiments will need to install Apache Maven13 (a tool used for making the
software build process easier) and Python14 (a popular scripting language), version
2.7.x or greater.

3.2 Sharded Table Support

In a real-world deployment, it is highly likely that large table(s) storing data will be
sharded (partitioned) to facilitate faster querying. Although YCSB will dynamically
create the table, it will not generate and execute the necessary commands to shard
a table if the NoSQL data store being tested does not automatically perform
sharding. When we searched the web, we found others with an interest in
performance testing against a sharded table, but there were no sample
configurations or methodologies on ways to actually execute it.

Through testing MongoDB, however, we discovered a methodology that would
allow us to shard the table YCSB would use, even though YCSB would not directly
shard the table itself. These procedures are as follows:

1. Properly configure YCSB and launch it to start the initial data load.

2. Stop YCSB after a few records have been inserted.

3. Delete the data from the table YCSB created.

4. Shard the table within the MongoDB environment.

5. Use YCSB to perform the initial data load.

These steps leverage YCSB for the initial creation of the table it will load and test
against. We discovered that YCSB will not drop the table if it already exists.
Moreover, we simply needed to remove any loaded data, shard the table, and restart
the initial data loading. Due to the inability to control which fields are used for what

4

purposes during performance testing, sharding was performed on the “_id” field
in MongoDB. Although not necessarily an ideal match to real-world use, it did
allow us to evenly distribute the initial data load across all shards.

For Accumulo/Hadoop and Elasticsearch, the technique (described previously) to
create a properly sharded table was not needed. In both cases, the table was
automatically sharded due to the way these NoSQL servers natively operate;
namely, once their software is configured for sharding, any newly created tables
are automatically sharded across the available data nodes.

3.3 Workload Configuration

When using YCSB, a configuration file is used that contains values to define the
workload with which to test. By defining the parameters of a workload, we model
the usage pattern of the performance tests to match what the real-world usage would
be. The definition of workload used for performance testing was as follows:

• Initially populate the NoSQL data store with 100,000,000 records before
performance testing. Although this amount is not close to the number of
records expected in our environment, given the available hardware for each
data node and the number of available nodes, it would provide a large
enough record set to see how various operations would perform and prove
sufficiently large enough to show any performance differences between the
NoSQL solutions being tested.

• Perform 8,000,000 transactions. This number was chosen because it would
mimic the constant, high-volume usage expected in our type of environment
and the usage pattern over an extended period of time. In addition, by
executing a significant number of transactions, any caching of data
performed by the hardware, operating system, and data store should be
thoroughly used and regularly refreshed. The configuration of transactions
for the workload during testing consisted of the following:

○ 10% reads

○ 20% updates

○ 50% inserts

○ 10% read-modify-writes

○ 10% scans (maximum number of records to access set to 1,000)

• A single table, modeled after a real-world design, consisting of the
following:

5

○ 32 fields of different capacity:

 30 of small capacity (random size between 1 and 10 bytes)

 1 of medium capacity (random size between 1 and 512 bytes)

 1 of large capacity (random size between 1 and 1,024 × 5 bytes)

It is interesting to note that YCSB does not support record deletion as part of the
workload modeling. One of the 4 operations used in typical persistent storage
operations (typically referred to as “CRUD”15) is the ability to delete data.
Depending on usage, deletion of data typically falls into one of 2 general categories:
deletion of individual records one at a time or bulk deletion of large quantities of
records. Although it is not surprising that bulk deletion, typically done on an entire
shard (partition) of data, is not supported because YCSB does not directly support
sharded table creation, it is a bit surprising that individual record deletion support
is missing.

Deleting records can have varying degrees of performance impact depending on
how a data store handles the physical deletion process. Some data stores will not
reuse freed space within a file on disk, requiring a maintenance action to be
performed that compacts the file. This compaction may or may not be performed
on a live system, which impacts availability, especially in 24/7 operational
environments. Other data stores use custom structures within the data files storing
the records on disk, allowing them to mark specific parts of a file as available for
reuse. Depending on how the data store writes new records into these newly
available slots, it may cause individual records to be written in a fragmented manner
or leave small, unused areas within the file. Unusable space within the file will
cause the data files to artificially inflate, possibly forcing multiple physical read
operations for fragmented records or deeper seeks into a file than would be
normally necessary if the disk space was freed by compaction.

YCSB generates statistics for both of the workload commands: load and run.
Although loading data are highly important to our environment, we are more
interested in overall performance, because the NoSQL solution operates when it is
fully loaded with records. The statistics YCSB generates during initial data load
were collected but not included in this report. The statistics generated during each
run for each NoSQL solution are included in the Appendixes.

4. Hardware Configuration

For testing all NoSQL configurations, the following hardware was used with
RHEL, version 6.8, and all recent RHEL patches were applied:

6

• 1 Dell PowerEdge R710 server

○ One 2.26-GHz Xeon 4 Core central processing unit (CPU)

○ Two 250-GB, 7,200-RPM SATA drives

○ Four 1-TB, 7,200-RPM SATA drives

○ Eight 4-GB memory sticks (32 GB total)

○ RHEL, version 6.8

○ Use:

 YCSB

 MongoDB, Accumulo/Hadoop, and Elasticsearch “master” server

• 4 Dell PowerEdge R420 servers

○ Two 2.2-GHz Xeon E5-2430 6 Core CPU

○ Four 2-TB, 7,200-RPM SATA Drives

 PERC H710 mini configured for hardware-based redundant array of
independent disks (RAID)-0 across all drives

○ Eight 16-GB memory sticks (128 GB total)

○ RHEL, version 6.8

○ Use:

 MongoDB, Accumulo/Hadoop, and Elasticsearch sharded data
nodes

5. MongoDB

5.1 Configuration

MongoDB, version 3.2.7, the most recent version available at the time, was
obtained from MongoDB’s download website16 and used for performance testing.
The Dell R710 was used as the master node, running both the Config Server and
Query Router portions of MongoDB, as well as YCSB for both initial data loading
and workload performance testing. In an ideal situation, YCSB would have been
installed and run from another server so as not to impact the performance. Due to
the limited availability of hardware for testing and the light load MongoDB’s

7

Config Server and Query Router would place on the Dell R710, it was deemed
acceptable to collapse the preferred setup onto this single server (Fig. 1).

Fig. 1 MongoDB configuration

The remaining servers, all Dell R420s, were reserved as data nodes for storing the
synthesized records generated by YCSB. These servers were configured for a
sharded setup, similar to what would be expected in our production environment.
Replication, which would provide data redundancy (similar to a RAID), was not
enabled due to the limited availability of hardware.

5.2 Performance Experiment and Results

Four performance runs using YCSB were executed against fresh, initial data loads.
The statistics generated by YCSB from each performance run were collected and
then analyzed. MongoDB’s overall throughput (Fig. 2) was consistent between
performance runs, peaking at 152 transactions per second and bottoming out at 142
transactions per second, a range of approximately 9%. There is no known cause for
the overall throughput performance variance; however, if future study is performed
as outlined in Section 10, the use of additional performance tracking tools may
reveal the cause. Similar to the other NoSQL solutions tested, MongoDB released
all disk space used when the table being used for testing was dropped between
performance runs.

MongoDB Master Node (Dell R710)
• Config Server
• Query Router
• YCSB

MongoDB Data Nodes (Dell R420)
• Sharded Configuration
• No Replication

8

Fig. 2 MongoDB throughput

When comparing average latencies between various transaction types within
MongoDB, the results shown in the graph (Fig. 3) are not unexpected. All of the
transactions related to small, discrete-type transactions are very tightly grouped at
the bottom of the graph due to low, average latencies (lower latency is better).
MongoDB is designed more for a transactional-type environment rather than
environments solely performing analytics, which require retrieving and processing
huge numbers of records. In a transactional-type environment, such as backing a
highly responsive website, small data requests must be served instantaneously.
Based on the results from performance testing with YCSB, MongoDB’s strongest
performance appears to be in smaller, discrete transactions rather than running
analytics across large data sets.

Fig. 3 Comparison of average latencies within MongoDB

135

140

145

150

155

1 2 3 4
O

pe
ra

tio
ns

 P
er

 S
ec

on
d

Performance Run

MongoDB Overall Throughput

0

100000

200000

300000

400000

500000

600000

1 2 3 4

M
ic

ro
se

co
nd

s

Performance Run

MongoDB Average Latencies

Read

Read-Modify-Write

Insert

Update

Scan

9

6. Accumulo/Hadoop

6.1 Configuration

Hadoop, version 2.7.1;17 Zookeeper (a required dependency for Accumulo),
version 3.4.6;18 and Accumulo, version 1.7.0,19 were downloaded from their
respective project sites and used for performance testing. The Dell R710 was used
as the master node for all 3 services, as well as YCSB, for both initial data loading
and workload performance testing. In an ideal situation, YCSB would have been
installed and run from another server so as not to impact the performance. Due to
the limited availability of hardware for testing, it was deemed acceptable to collapse
the preferred setup onto this single server (Fig. 4).

Fig. 4 Accumulo/Hadoop configuration

The remaining servers, all Dell R420s, were reserved as data nodes for storing the
synthesized records generated by YCSB. These servers were configured for a
sharded setup, similar to what would be expected in our production environment.
Replication, which would provide data redundancy (similar to RAID), was not
enabled due to the limited availability of hardware.

6.2 Performance Experiment and Results

Four performance runs were initiated, and the statistics generated by YCSB were
collected for analysis after each run. Similar to the other NoSQL solutions tested,
the initial run was performed on a pristine installation, and subsequent runs were
performed after the table created by YCSB for testing was dropped (Fig. 5).

Accumulo, Hadoop and Zookeeper Master Node (Dell R710)
• Hadoop master
• Zookeeper master
• Accumulo master
• YCSB

Accumulo and Hadoop Data Nodes (Dell R420)
• Sharded Configuration
• No Replication

10

Fig. 5 Accumulo/Hadoop throughput

Hadoop’s performance was consistent throughout all 4 performance tests. The
variance between the highest throughput (62) and lowest throughput (50) was 19%.
The consistently lower throughput after the initial performance indicates that
Hadoop will perform slightly better on fresh, previously unused instances than it
will when the environment is reused, even though tables and data were removed
between performance tests.

Similar to MongoDB, Hadoop’s latencies are very, very close (Fig. 6) for all
transaction types except scans, which had the highest latencies. The latencies for
non-scan transactions are so close that the latency lines for several transaction types
are masked in the graph by others. Scan latencies are much higher, which is not
unexpected due to the larger number of records being processed during that type of
transaction.

Fig. 6 Comparison of average latencies within Accumulo/Hadoop

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

1 2 3 4

M
ic

ro
se

co
nd

s

Performance Run

Accumulo/Hadoop Average Latencies

Read

Read-Modify-Write

Insert

Update

Scan

0

20

40

60

80

1 2 3 4

O
pe

ra
tio

ns
 P

er
 S

ec
on

d

Performance Run

Accumulo/Hadoop Overall
Throughput

11

7. Elasticsearch

7.1 Configuration

Elasticsearch, version 2.2.0, the most recent version available at the time, was
obtained from Elasticsearch’s download website20 and used for performance
testing. The Dell R710 was used as the master node, acting as the master
Elasticsearch server, as well as YCSB, for both initial data loading and workload
performance testing. In an ideal situation, YCSB would have been installed and run
from another server. Due to the limited availability of hardware for testing, and the
light load the Elasticsearch server process would place on the Dell R710, it was
deemed acceptable to collapse the preferred setup onto this single server (Fig. 7).

Fig. 7 Elasticsearch configuration

The remaining servers, all Dell R420s, were reserved as data nodes for storing the
synthesized records generated by YCSB. These servers were configured for a
sharded setup, similar to what would be expected in our production environment.
Replication, which would provide data redundancy (similar to RAID), was not
enabled due to the limited availability of hardware.

7.2 Performance Experiment and Results

Four performance runs were initiated, and the statistics generated by YCSB were
collected for analysis after each run (Fig. 8). Similar to the other NoSQL solutions
tested, the initial run was performed on a pristine installation, and subsequent runs
were performed after the table created by YCSB for testing was dropped.

Elasticsearch Master Node (Dell R710)
• Elasticsearch Master
• YCSB

Elasticsearch Data Nodes (Dell R420)
• Sharded Configuration
• No Replication

12

Fig. 8 Elasticsearch throughput

Although Elasticsearch frees disk space when a table is dropped, an approximate
23% performance decrease between the first and subsequent performance runs was
observed on overall throughput. Based upon the individual statistics for each
transaction type (available in the Appendixes), this performance decrease was not
solely attributable to one specific transaction type that experienced a performance
degradation on performance runs after the first execution.

Figure 9 shows the increase in average latencies across all transaction types for
performance. The largest contributors to the general drop in throughput
performance are read-write-modify and scan transactions, whereas the remaining
types of transactions show more modest latency increases. As expected, after
pulling larger volumes of records, scan-type transactions showed the largest
average latency.

Fig. 9 Comparison of average latencies within Elasticsearch

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

1 2 3 4

M
ic

ro
se

co
nd

s

Performance Run

Elasticsearch Average Latencies

Read

Read-Modify-Write

Insert

Update

Scan

0

50

100

150

200

1 2 3 4
O

pe
ra

tio
ns

 P
er

 S
ec

on
d

Performance Run

Elasticsearch Overall Throughput

13

8. Comparison of the Tested NoSQL Solutions

As shown in Fig. 10, overall, the Elasticsearch and MongoDB performance was
very similar to the simulated performance testing workload. However,
Accumulo/Hadoop showed a significant increase in the amount of time executing
the same workload compared with MongoDB and Elasticsearch. This performance
difference is most likely due to YCSB’s workload simulator not leveraging
Hadoop’s mapreduce capability for table scans, potentially causing a large increase
in latency for that specific transaction type that may have been significantly reduced
otherwise.

Fig. 10 Simulated execution time comparison

With regard to average throughput, both Elasticsearch and MongoDB showed more
than twice the throughput as that of Accumulo/Hadoop. Again, Hadoop’s
performance may have been hampered by the lack of leveraging mapreduce, which
may significantly improve scan transactions (Fig. 11).

Fig. 11 Performance comparison of Elasticsearch, MongoDB, and Accumulo/Hadoop

0.00
20000000.00
40000000.00
60000000.00
80000000.00

100000000.00
120000000.00
140000000.00
160000000.00
180000000.00

1 2 3 4

Ti
m

e
in

 M
ili

se
co

nd
s

(L
ow

er
 is

 B
et

te
r)

Performance Run

Simulated Workload Execution Time

MongoDB

Elasticsearch

Accumulo/Hadoop

0

50

100

150

200

1 2 3 4O
pe

ra
tio

ns
 P

er
 S

ec
on

d
(H

ig
he

r i
s B

et
te

r)

Performance Run

Average Operations Per Second

MongoDB

Elasticsearch

Accumulo/Hadoop

14

9. Conclusions

Based on the statistics generated for the time taken to complete the simulated
workloads and the average operations per second, both MongoDB and
Elasticsearch appear to be generally well suited for our specific use case. Both
NoSQL solutions completed the workloads in approximately the same amount of
time and with approximately the same throughput. For our particular use case,
Accumulo/Hadoop did not perform as well and most likely would not be a suitable
solution due to the mixed use (backing web applications requiring fast response
times for discrete data requests and analytics).

Particularly interesting are the average latency statistics for each of the individual
transaction types. For insert and update transactions, Elasticsearch had the highest
latency by a wide margin. Although Elasticsearch’s performance was average for
reads and read-modify-write transactions, its performance was notably better than
the other NoSQL solutions in scans. Scan performance was so significantly faster
for Elasticsearch that it made up for lesser performance in other areas to allow it to
match MongoDB’s performance overall.

10. Future Work

Although every effort was made to create the best possible experimental design and
execution, a few improvements that are not currently possible could be undertaken
in the future. Although YCSB provided a solid framework for initial loading,
testing generalized workloads and gathering statistics, a few improvements would
have made each step align more closely with our real-world data sets and uses. For
example, providing an existing table loaded with real data to generate the load
model would have resulted in an initial data load that mimics the real world,
including the actual data types, instead of using random text-based data across the
board. Coupled with real-world data, real-world queries could be gathered from the
existing production environment, analyzed, and then used for generating the types
of queries and data processing that currently exist. Both of these would improve the
accuracy of the test results to get closer to what real-world performance may
actually be when the system is deployed. These alterations to the schema would
also facilitate the testing and impact of various indexing techniques, allowing better
performance comparisons in better optimized configurations.

Duplicating the workload performance testing with replication enabled would be
highly informative. In addition to determining the performance impact enabling
replication has within a specific NoSQL server, performance comparisons between
the different NoSQL server solutions would be useful. Due to the techniques used

15

to implement replication, there is a likelihood that the performance comparisons
seen in this report will be different when replication is enabled. Future
experimentation in which additional hardware is available could also be performed
with replication enabled and disabled to determine the performance impact on the
NoSQL servers as they scale out.

An additional improvement would be to monitor and collect individual node
performance characteristics (CPU, memory, disk input/output use) using a tool such
as Ganglia.21 Once any performance impact introduced by running a tool such as
Ganglia is removed, the collected results would provide insight into how hard the
tested NoSQL solutions are using available resources, providing an additional point
for comparison rather than solely relying on raw transaction throughput statistics.

During performance testing, all executions were performed with 10 concurrent
YCSB threads running on the master node. Additional performance
experimentation could be done to determine the optimum number of threads before
performance of the NoSQL data store began to degrade. In real-world use, the
number of connections to the data store can vary wildly as workloads shift
throughout normal daily operations. Knowing the maximal number of connections
before performance degrades against a known number of data nodes would be very
useful to systems administrators for capacity planning.

16

11. References

1. Apache Accumulo. Forest Hill (MD): The Apache Software Foundation; 2016
[accessed 2016 Aug 2]. https://accumulo.apache.org/.

2. Wecome to Apache(tm) Hadoop(r)! Forest Hill (MD): The Apache Software
Foundation; 2014 [accessed 2015 Oct 28]. https://hadoop.apache.org.

3. MongoDB for giant ideas. New York (NY): MongoDB, Inc.; 2016 [accessed
2015 Oct 28]. https://www.mongodb.org.

4. Elasticsearch webpage. Mountain View (CA): Elasticsearch BV; 2016
[accesed 2016 May 23]. https://www.elastic.co/.

5. Relational database management system. San Franscico (CA): Wikipedia
Foundation, Inc.; 2015 [accessed 2015 Oct 28].
https://en.wikipedia.org/wiki/Relational_database_management_system.

6. Semi-structured data. San Franscico (CA): Wikipedia Foundation, Inc.; 2015
[accessed 2015 Oct 28]. https://en.wikipedia.org/wiki/Semi-structured_data.

7. Oracle, Database 12c. Redwood Shores (CA): Oracle; 2015 [accessed 2015
Oct 28]. https://www.oracle.com/database/index.html.

8. PostgreSQL: The world's most advanced open source database. PostgreSQL
Global Development Group; 2015 [accessed 2015 Oct 28].
http://www.postgresql.org/.

9. Parker T, Ritchey P. High capacity single table performance design using
partitioning in oracle or PostgreSQL. Adelphi (MD): Army Research
Laboratory (US); 2012. Report No.: ARL-CR-0689.

10. Woodie A. Forrester Ranks the NoSQL Database Vendors. San Diego (CA):
Datanami; 2014 Oct 3 [accessed 2015 Oct 28]. http://www.datanami.com/
2014/10/03/forrester-ranks-nosql-database-vendors /.

11. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking
cloud serving systems with YCSB. Proceedings of the 1st ACM Symposium
on Cloud Computing; 2010 Jun 10‒11. Indianapolis, IN.

12. Cooper BF. brianfrankcooper/YCSB. GitHub; 2016 [accessed 2015 Oct 28].
https://github.com/brianfrankcooper/YCSB.

13. Welcome to Apache Maven. Forest Hill (MD): The Apache Software
Foundation; 2016 [accessed 2015 Nov 3]. https://maven.apache.org/.

https://accumulo.apache.org/
https://hadoop.apache.org/
https://www.mongodb.org/
https://www.elastic.co/
https://en.wikipedia.org/wiki/Relational_database_management_system
https://www.oracle.com/database/index.html
http://www.postgresql.org/
http://www.datanami.com/%202014/10/03/forrester-ranks-nosql-database-vendors%20/
http://www.datanami.com/%202014/10/03/forrester-ranks-nosql-database-vendors%20/
https://github.com/brianfrankcooper/YCSB

17

14. Welcome to Python.org. Python Software Foundation; 2016 [accessed 2015
Nov 3]. https://www.python.org/.

15. Create, read, update and delete, San Franscico (CA): Wikimedia Foundation,
Inc.; 12 January 2016 [accessed 2015 Jan 13].
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete.

16. Downloads. New York (NY): MongoDB, Inc.; 2016 [accessed 2015 Nov 2].
https://www.mongodb.org/downloads#production.

17. Apache Hadoop Releases. Forest Hill (MD): The Apache Software
Foundation; 2014 [accessed 2016 Jun 21].
http://hadoop.apache.org/releases.html.

18. Apache Zookeeper – Releases. Forest Hill (MD): The Apache Software
Foundation; 2016 [accessed 2016 Jun 21].
http://zookeeper.apache.org/releases.html.

19. Downloads. Forest Hill (MD): The Apache Software Foundation; 2016
[accessed 2016 Jun 21]. http://zookeeper.apache.org/releases.html.

20. The Elastic Stack download. Mountain View (CA): Elasticsearch BV; 2016
[accessed 2016 May 23]. https://www.elastic.co/downloads.

21. Ganglia Monitoring System. Berkeley (CA): Ganglia Project; n.d. [accessed
2015 Dec 8]. http://www.ganglia.info.

https://www.python.org/
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://hadoop.apache.org/releases.html
http://zookeeper.apache.org/releases.html
http://zookeeper.apache.org/releases.html
http://www.ganglia.info/

18

INTENTIONALLY LEFT BLANK.

19

Appendix A. Overall Average Latencies

20

The following charts (Fig. A-1 through A-5) compare the average latencies for each
transaction type between the tested NoSQL solutions.

Fig. A-1 Read-modify write average latency

Fig. A-2 Insert average latency

0
50000

100000
150000
200000
250000

1 2 3 4

Av
er

ag
e

La
te

nc
y

(L
ow

er
 Is

 B
et

te
r)

Performance Run

Read-Modify-Write
Average Latency

MongoDB

Elasticsearch

Accumulo/Hadoop

0
10000
20000
30000
40000
50000
60000

1 2 3 4

Av
er

ag
e

La
te

nc
y

(L
ow

er
 Is

 B
et

te
r)

Performance Run

Insert
Average Latency

MongoDB

Elasticsearch

Accumulo/Hadoop

21

Fig. A-3 Update average latency

Fig. A-4 Scan average latency

Fig. A-5 Read average latency

0

20000

40000

60000

80000

100000

1 2 3 4

Av
er

ag
e

La
te

nc
y

(L
ow

er
 Is

 B
et

te
r)

Performance Run

Update
Average Latency

MongoDB

Elasticsearch

Accumulo/Hadoop

0

500000

1000000

1500000

2000000

1 2 3 4

Av
er

ag
e

La
te

nc
y

(L
ow

er
 Is

 B
et

te
r)

Performance Run

Scan
Average Latency

MongoDB

Elasticsearch

Accumulo/Hadoop

0

100000

200000

300000

1 2 3 4Av
er

ag
e

La
te

nc
y

(L
ow

er
 Is

 B
et

te
r)

Performance Run

Read
Average Latency

MongoDB

Elasticsearch

Accumulo/Hadoop

22

INTENTIONALLY LEFT BLANK.

23

Appendix B. MongoDB Raw Performance Numbers

24

Statistic Perf Run 1 Perf Run 2 Perf Run 3 Perf Run 4

OVERALLa

Runtimeb 53589116 52397223 52498683 56177868
Throughput
(ops/sec) 149.2840449 152.6798472 152.3847751 142.4048346

READ

Operations 1600593 1599737 1601905 1601143

Avg Latc 14655.49946 14989.27076 15009.2778 14729.48794

Lat Varc 296200041.82 257119308.07 226897250.54 661175799.30

Min Latc 510 546 504 507

Max Latc 3052680 2282599 1563543 15346122

95th Per Latb 32000 32000 32000 32000

99th Per Latb 39000 39000 39000 39000

Return 1600593 1599737 1601905 1601143

READ-MODIFY-WRITE

Operations 799740 800089 801564 799791

Avg Latc 29129.69781 29822.38637 29736.23325 28990.01811

Lat Varc 2057319877.21 1088404545.36 913569712.27 1032167145.38

Min Latc 946 1051 973 892

Max Latc 18943978 5037281 4641542 4234861

95th Per Latb 63000 63000 63000 63000

99th Per Latb 76000 76000 76000 76000

CLEANUP

Operations 10 10 10 10

Avg Latc 639.7 853 925.9 713.4

Lat Varc 3654856.81 6505905 7669401.49 4549125.24

Min Latc 1 1 1 1

Max Latc 6375 8505 9234 7112

95th Per Latb 6000 8000 9000 7000

99th Per Latb 6000 8000 9000 7000

INSERT

Operations 4000009 3999669 4000482 3997531

Avg Latc 15259.00436 15532.29465 15502.30262 15376.04012

Lat Varc 1329815744.56 750759403.10 817869519.89 711128877.11

Min Latc 484 499 506 490

Max Latc 19261144 5155493 11238529 7951853

95th Per Latb 32000 32000 32000 32000

99th Per Latb 39000 39000 39000 40000

Return 4000009 3999669 4000482 3997531

UPDATE

25

Operations 2399305 2400604 2399164 2400452

Avg Latc 14691.12889 15038.06724 14953.64515 14537.20209

Lat Varc 1146098647.51 671476718.65 595633461.28 551782098.48

Min Latc 398 369 417 373

Max Latc 19241419 5021646 10620600 7151262

95th Per Latb 31000 32000 32000 32000

99th Per Latb 39000 39000 39000 39000

Return 2399305 2400604 2399164 2400452

SCAN

Operations 799833 800079 800013 800665

Avg Latc 519284.4313 501173.3909 502323.5175 550773.376

Lat Varc 284121264615.24 245142958209.89 257999567148.60 504905485224.05

Min Latc 1374 1362 1339 1340

Max Latc 9827641 9489587 13317476 40689574

95th Per Latb N/A N/A N/A N/A

99th Per Latb N/A N/A N/A N/A

Return 799833 800079 800013 800665
Abbreviations: Avg, average; Lat, latency; Max, maximum; MDB, MongoDB; Min, minimum; N/A, not
available; ops/sec, operations per second; Per, percentile; Perf, performance; Var, Var.
aBold italics represent category.
bMilliseconds.
cMicroseconds.

26

INTENTIONALLY LEFT BLANK.

27

Appendix C. Elasticsearch Raw Performance Numbers

28

Statistic Perf Run 1 Perf Run 2 Perf Run 3 Perf Run 4

OVERALLa

Runtimeb 46341304.00 59290521.00 59756166.00 61435485.00
Throughput
(ops/sec) 172.6321728 134.9288194 133.8773977 130.2179026

READ

Operations 1600253 1600573 1600177 1600322

Avg Latc 30797.95472 39466.02557 38883.62301 41537.75591

Lat Varc 9788983140.10 13135376466.84 13055686446.52 13917133929.15

Min Latc 400 354 345 359

Max Latc 7244190 7655769 2024994 2644727

95th Per Latb 169000 318000 312000 345000

99th Per Latb 497000 545000 549000 563000

Return 1600253 1600573 1600177 1600322

READ-MODIFY-WRITE

Operations 800821 800231 799266 800079

Avg Latc 83013.28272 108396.7725 108325.9005 113227.5195

Lat Varc 34191436625.70 46473986149.00 46867125986.38 49152908071.01

Min Latc 2479 2485 2579 2498

Max Latc 7380199 7832373 5023198 4992357

95th Per Latb 508000 612000 618000 641000

99th Per Latb 873000 943000 946000 958000

CLEANUP

Operations 10 10 10 10

Avg Latc 15647.4 40373.2 15661.6 55854.3

Lat Varc 122506987.64 1599941306.96 110821661.84 874308637.41

Min Latc 8127 11639 7668 28509

Max Latc 40946 122493 36765 117662

95th Per Latb 40000 122000 36000 117000

99th Per Latb 40000 122000 36000 117000

INSERT

Operations 3999358 3997985 4001346 4001160

Avg Latc 40430.26769 52837.69079 53632.07123 54538.87128

Lat Varc 14931073111.66 20271030187.45 20741229164.17 21088883919.97

Min Latc 1420 1365 1471 1434

Max Latc 7182325 7499094 4073622 5116669

95th Per Latb 312000 440000 444000 448000

99th Per Latb 635000 708000 716000 721000

Return 3999358 3997985 4001346 4001160

UPDATE

29

Operations 2401341 2400584 2398337 2398893

Avg Latc 60741.95254 79113.22524 79031.09753 82390.33232

Lat Varc 23828836120.88 32487312983.86 32719869613.18 34215699719.42

Min Latc 1622 1677 1677 1657

Max Latc 7250953 7816412 4914606 4981801

95th Per Latb 459000 495000 498000 506000

99th Per Latb 776000 851000 856000 868000

Return 2401341 2400584 2398337 2398893

SCAN

Operations 799869 801089 799406 799704

Avg Latc 132453.6022 159626.9182 162975.7695 164073.6762

Lat Varc 40294829656.79 46396021364.21 47094888256.02 47787227419.25

Min Latc 2026 2168 2048 2200

Max Latc 8320897 7601090 2706485 5098816

95th Per Latb 551000 597000 606000 611000

99th Per Latb 815000 852000 857000 861000

Return 799869 801089 799406 799704
Abbreviations: Avg, average; Lat, latency; Max, maximum; Min, minimum; ops/sec, operations per second;
Per, percentile; Perf, performance; Var, Var.
aBold italics represent category.
bMilliseconds.
cMicroseconds.

30

INTENTIONALLY LEFT BLANK.

31

Appendix D. Accumulo/Hadoop Raw Performance Numbers

32

Statistic Perf Run 1 Perf Run 2 Perf Run 3 Perf Run 4

OVERALLa

Runtimeb 127543725.00 159051237.00 140703245.00 140869092.00
Throughput
(ops/sec) 62.72358754 50.29825703 56.85725301 56.79031423

READ

Operations 1600457 1601363 1603507 1599383

Ave Latc 119197.3758 216709.9007 182378.9185 157614.01

Lat Varc 179313305208.40 399400795495.80 297794074059.09 254209719476.46

Min Latc 1449 1858 1769 1911

Max Latc 6953521 7760428 6854180 7081101

95th Per Latb 125000 253000 212000 183000

99th Per Latb
Return 1600457 1601363 1603507 1599383

READ-MODIFY-WRITE

Operations 800519 801133 802723 800027

Ave Latc 119114.2019 215888.3647 182022.1489 157289.8678

Lat Varc 178702351818.39 396686487083.27 296608679889.01 253192022096.29

Min Latc 1716 1867 2288 2076

Max Latc 6953568 7760450 6854216 7081136

95th Per Latb 125000 252000 212000 183000

99th Per Latb
CLEANUP

Operations 10 10 10 10

Ave Latc 9950.9 10421.7 9023.7 11724

Lat Varc 19366610.89 16400429.41 8666881.61 200110545.40

Min Latc 4999 4074 5012 3956

Max Latc 18963 16231 14550 53849

95th Per Latb 18000 16000 14000 53000

99th Per Latb 18000 16000 14000 53000

INSERT

Operations 4001123 3999008 3996568 3998774

Ave Latc 78.62225755 76.62617754 92.43922435 102.4986828

Lat Varc 24422792.92 25885203.45 65993332.57 60300590.97

Min Latc 10 10 10 11

Max Latc 3709516 5109179 5966668 5939528

95th Per Latb 0 0 0 0

99th Per Latb 0 0 0 0

Return 4001123 3999008 3996568 3998774

UPDATE

33

Operations 2399758 2400425 2401898 2401903

Ave Latc 16.12536639 20.9917223 22.51156169 15.24438705

Lat Varc 13141745.30 47910420.31 47088780.57 12140842.87

Min Latc 0 0 0 0

Max Latc 3296180 6351485 6149367 3223248

95th Per Latb 0 0 0 0

99th Per Latb 0 0 0 0

Return 2399758 2400425 2401898 2401903

SCAN

Operations 799181 800337 800750 799967

Ave Latc 1354098.45 1550875.565 1389025.324 1442443.907

Lat Varc 2928237791696.45 3211134761763.23 2842257166000.84 3084908137706.06

Min Latc 14505 15932 17606 19061

Max Latc 9063582 14027499 9224391 8223699

95th Per Latb N/A N/A N/A N/A

99th Per Latb N/A N/A N/A N/A

Return 799181 800337 800750 799967
Abbreviations: Avg, average; Lat, latency; Max, maximumMin, minimum; N/A, not available; ops/sec,
operations per second; Per, percentile; Perf, performance; Var, Var.
aBold italics represent category.
bMilliseconds.
cMicroseconds.

34

List of Symbols, Abbreviations, and Acronyms

CPU central processing unit

IDS intrusion detection system

RAID redundant array of independent disks

RDBMS relational database management system

RHEL Red Hat Enterprise Linux

YCSB Yahoo! Cloud Serving Benchmark

35

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO L
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL CIN D
 R RITCHEY

36

INTENTIONALLY LEFT BLANK.

	List of Figures
	1. Introduction
	2. Background
	3. Yahoo! Cloud Serving Benchmark (YCSB)
	3.1 Data Loading and Performance Testing Framework
	3.2 Sharded Table Support
	3.3 Workload Configuration

	4. Hardware Configuration
	5. MongoDB
	5.1 Configuration
	5.2 Performance Experiment and Results

	6. Accumulo/Hadoop
	6.1 Configuration
	6.2 Performance Experiment and Results

	7. Elasticsearch
	7.1 Configuration
	7.2 Performance Experiment and Results

	8. Comparison of the Tested NoSQL Solutions
	9. Conclusions
	10. Future Work
	11. References
	Appendix A. Overall Average Latencies
	Appendix B. MongoDB Raw Performance Numbers
	Appendix C. Elasticsearch Raw Performance Numbers
	Appendix D. Accumulo/Hadoop Raw Performance Numbers
	List of Symbols, Abbreviations, and Acronyms

